Impingement of liquid jets at atmospheric and elevated pressures: an observational study using paired water jets or water and methylcyclohexane jets

نویسندگان

  • NAOHIRO YASUDA
  • KOJI YAMAMURA
  • YASUHIKO H. MORI
چکیده

We have observed the impingement of two cylindrical liquid jets of either the same liquid, water, or two mutually immiscible liquids, water and methylcyclohexane (MCH), in either air under normal pressure (0.101MPa) or nitrogen gas under elevated pressures up to 4.0MPa. The flow rates of the two jets were adjusted such that they had equal axial momentum. Irrespective of the system pressure, we distinguished two characteristic regimes: the lower flow-rate regime, in which the jet impingement formed a regularly shaped planar sheet, and a higher flow-rate regime, in which a wrinkled sheet repeated azimuthal breakup. The transition from the former to the latter regime occurred at a lower flow rate for the water–MCH impingement than for the water–water impingement. An increase in the system pressure tended to shrink the liquid sheets, to promote the transition to the sheet-breakup regime and to intensify the liquid atomization. The formation of water–MCH compound droplets by the water–MCH impingement was confirmed visually.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Upward Seepage on Depth of Scour Hole Downstream of Free Falling Jets Under Constant Tail Water Depth

rade control structures are used to control bed erosion in steep small rivers mostly in the mountains. Scour downstream of this structure can lead to failure. Over the past years, the effect of different variables on this phenomena have been studied, however the effect of upward seepage which is common due to head difference of the banks water table or water surface level between the upstream a...

متن کامل

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface

In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...

متن کامل

Experimental Study of Parallel Jets Scouring, considering the effect of jets distance on erosion rate

The scouring process at downstream of the hydraulic structures is a complex phenomenon and many parameters affecting its amount. Failure to control this phenomenon causes damages to the dam and its associated hydraulic structures. In this research, the scouring caused by the combination of jets outlet from a gated spillway was investigated experimentally and the combination of jets adjacent to ...

متن کامل

Investigation of the Local Nusselt Number of the Symmetrical Liquid-Liquid Jets Emitting from a Nozzle

The aim of this paper is to study the local Nusselt number of the symmetrical liquid-liquid jets emitting from a nozzle. Equations obtained from theoretical works are arranged in the form of a computerized model. The validity of this model was tested by the data from an experimental paper [1]. After few adjustments the model predicted the experimental data with a reasonable accuracy. Making...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010